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Partial-wave representations of laser
beams for use in light-scattering calculations

Gerard Gouesbet, James A. Lock, and Gerard Grehan

0

Intheframeworkofg_nerahzedLorenz-Mietheory,laserbeamsaredescribedby setsofbeam-shape
coefficients.The modifiedlocalizedapproximationcoevaluatethesecoen_cienr.sforafocusedGaussian
beam ispresented.A new descriptionofGaussmn beams,calledstandardbeams,isintroduced.A
comparisonismade betweenthevaluesofthebeam-shapecoen_cienr.sintheframeworkofthelocalized
approximationand thebeam-shapecoe_cientsofstandardbeams. Thiscornpamsonleadsto new
insightsconcerningtheelectromagneticdescriptionoflaserbeams. The relevanceofourdiscussionis
enhancedbyademonstrationthatthelocalizedapproximationprovidesaverysatisfactorydescrlptionof
top-hatbeamsaswelt.

1. Introduction

Many opticalparticle-sizingtechniques rely on the

interaction between laser beams and the particles

that are being studied. Examples are provided by
Gaussian laserbeams used in phase-Doppler instru-

ments, I-3lasersheets used inparticle-imagevelocim-
etry,_-_ and top-hat beams used in the so-called

top-hat technique.:-_o Ifthe diameter ofthe spheri-

cal particlesthat are being studied iscomparable to

the characteristicbeam width, the theoreticalanaly-
sis of the light-scatteringsignature of the particles

must relyon generalizedLorenz-Mie theory,IGLMTI

rather than on the usual plane-wave Lorenz-Mie

theory._I A background in GLMT and itsapplica-
tionsmay be gained from Refs.12-15.

In this formalism, shaped beams such as laser

beams are mathematically expanded in terms of

partialwaves. The complex number that describes

the amplitude and the phase of each partialwave in

the expansion iscalleda beam-shape coefficient{BSC).

These coefficientsmay be expressed as angular inte-
grals of the radialcomponent of the beam's electric

and magnetic fields.L_ Unfortunately. none of the
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commonly used mathematical descriptions of laser
beams is an exact solution of MaxweU's equations. _6-Ls

As a result, the BSC's produced by the angular in-
tegration of these fields retain a weak dependence on
the radial coordinate, _ in contrast with the fact that

the derivation of the partial-wave decomposition de-
mands that these coefficients be constants. The
residual radial dependence is an artifact that results

from the imperfect description of the electromagnetic
fields of the beam.

On the other hand, a surprisingly accurate approxi-

mation to the BSC's is the so-called localized approxi-
mation. 2° It is a simple analytical expression whose
accuracy is typically approximately 1 part in 10 s from
the value of the constant portion of the BSC's ob-
tained by numerical integration. -°1 This approxima-

tion relies on the localized interpretation of partial-
wave expansions,_- which is an analogy to van de

Hulst'slocalizationprincipleinLorenz-Mie theory} 3
The localizationapproximation BSC's are constants

as is required of partial-wave expansions, and the

beam descriptionsgenerated by insertion of these

BSC's into the pamial-wave expansion have been
termed localizedbeams. _9 Such beams exacdv sat-

isfyMaxweU's equatmns because they are built"from
basisfunctionswith constant coefficients.

Untilrecently,therehad been no rigorousjustifica-

tion of the validityof the localizedapproximation.

Initially,itsvaliditywas demonstrated by a compari-
son ofthe numerical valuesofthe BSC's evaluated bv

the localizedapproximation with the values obtaine_i

by numerical integration or the finite series

method. _L-_-_6 When a beam propagates along the z
axis of the coordinate system used to describe the
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partial-wave expansion, i.e., an on-axis beam, one of
us recently succeeded in giving a derivation of the
localized approximation 21 that relied on the station-
ary phase method, in analogy with van de Hulst's
derivation of the localization principle} 3 The deriva-
tion, however, could not be generalized to off-axis
beams, i.e., beams that are propagating parallel to but
not along the z axis. By the use of another technique
that relies on Taylor series expansions, a final deriva-
tion of the validity of the localized approximation for
a focused Gaussian beam has been recently obtained
for both the on-axis m and the off-axis cases} 7 This
derivation uncovered a modification of the localized

approximation that has been called the modified
localized approximation.

A significant ingredient in the derivation was the
discovery of the so-called standard-beam expressions.
We strongly believe that standard beams will prove to
be the best mathematical description of Gaussian
beams. Standard beams exactly satisfy MaxweU's

equations, because they are constructed from BSC's
that are also constants. For the on-axis case, stan-

dard-beam BSC's are given by a simple infinite se-
ries m that results from an extrapolation of the Davis

procedure ts for description of the electromagnetic
fields of a focused Gaussian beam. The standard-

beam BSC's for the off-axis case have not yet been

discovered, to our knowledge.
In this paper we consider two aspects of the partial-

wave representation of laser beams for use in GLMT
scattering calculations. (ai In the context of an
on-axis focused Gaussian beam, we examine the

convergence properties of the infinite series that
describes the standard-beam BSC's. We also com-

pare the values of the localized approximation and the
modified localized approximation analytical expres-
sions for the BSC's with the standard-beam BSC's
that we use as a benchmark. We claim that the

closer the localized approximation BSC's come to the
standard-beam BSC's, the more accurate the local-
ized approximation is in describing a focused Gauss-
ian beam. (b) We apply the localized interpretation
of partial-wave expansions to a top-hat beam and
assess the accuracy of She resulting top-hat-beam
localized approximation. To avoid burying the es-
sence of the physics in complicated mathematical
expressions, only the on-axis case is considered in this

paper.
This paper is organized as follows. Section 2

summarizes the Davis formulation for description of

the Gaussian beam electromagnetic fields and intro-
duces the localized and the standard beams. Section

3 compares the numerical values of localized and
standard-beam BSC's, providing new insights as to
the nature of Gaussian beams and leading to the
conclusion that standard beams should indeed be

taken as the very definition of Gaussian beams.

Section 4 further supports the validity of the localized
interpretation of partial-wave analyses by describing
the building of localized beams that provide a very
satisfactory description of top-hat beams.

2. Davis, Standard, and Localized Descriptions of
On-Axis Focused Gaussian Beams

A. Davis Formulation

A description of the electromagnetic fields of a fo-
cused Gaussian laser beam is provided by the Davis
formulation} 6.17.2s We consider a Gaussian beam

that is propagating along the z' axis from negative z'
to positive z' (Fig. l). Two parallel Cartesian coordi-
nate systems must be used in this problem: (a) x',
y', z', which is attached to the Gaussian beam and
whose origin is at the center of the beam waist, and
(b} x, y, z, which is used to describe the partial-wave
expansion of the Gaussian beam. The origin of the
x'y'z' system with respect to the xyz system is zo.
We start by considering the simplest case, Zo = 0, and
below we examine the more general on-axis case with
z0 _ 0 when appropriate.

We consider a monochromatic light wave with an
exp(+ic_t) time dependence. This time dependence
will be omitted hereafter, as is the normal practice.
In the Davis formulation a laser beam is described by

a linearly polarized vector potential,

A : (A.,, O, 0). (1)

The nonzero component A_ is given by

A_ = $(x, y, z)exp(-ikz). (2)

x

y'

Fig. 1. Two coordinate systems that describe a focused Gaussian

beam that is propagating along the z axis. The origin of the x'y'z'

coordinate system is at the center of the beam waist, and the

partial-wave expansion is carmed out wir, h respect to the _c, y, z

coordinate system.
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The function 5(x, y, z} is unknown and must be

determined. Such a determination will involve spa-
tial derivatives. However, the transverse coordi-
nates x and y scale with a small transverse character-
istic length w0, and the coordinate z scales with a
large longitudinal characteristic length I. The scal-
ing lengths wo and l are taken to be the beam-waist

radius and the spreading (or diffraction) length kwo 2,
respectively. Rescaled dimensionless coordinates

(_, _, _) may therefore be introduced according to

x y z

=w0 n w0 _ =z (3)

The rescaled spatial derivatives 05,'0_, 05/'_n, and
aS,, 0_ are now of the same magnitude.

Within the Lorentz g'auge, the vector potential A
must satisfy the Helmholtz equation,

V2A + k2A = 0, (4)

providing the partial differential equation for 4:

+ $ - 2i _-_ + s"-_., = 0.

In Eq. (5) we have introduced the small dimensionless
parameter s given by

s = wo/l = !/kwo.

Because s is the ratio of two characteristic length
scales that define the overall aspect of the beam, we

name it the beam-confinement factor. For a plane
wave with wo --* =, the beam-confinement factor is
zero. Even for commonly encountered Gaussian

beams, this factor is usually very small. For in-
stance, for X = 0.5 ,.m and wo = 50 win. we have s =
10 -3. There is, however, an upper theoretical limit
to s that is discussed at the end of this subsection.

The function 5 is ex'panded in powers of s '_as

5 = 50 + s252 + s454 + ....

The lowest-order term 50 represents the fundamental
mode of the Gaussian beam. By the use of Eq. (5), it
is easily checked that this mode is

50 = iq exp{-iQIg -_, _-_)],

1

Q=i_-2r,

Once 5o is known, Eq. i5} implies that the higher-
order functions 0z, for n > 1, i.e., corrections to the

fundamental mode, may be recursively deduced from

+ _a_a- 2i_7i5__ _= -o_..,_d_?_, n >_ 0. (10)

The functions _ and O) are more complicated_S. _7

than dJo. Because _., 5_ .... depend on ,0o through

Eq. (101, the fundamental mode $0 alone completely
determines the vector potential A from which ele_ric
and magnetic fields are derived by the use of

-ic

E = --_--V(V. A) - irmA, (lli

leading to

H = (V x A)/_t, 112)

E, = Eo 5o + s" 5_. + --_. ] + ... exp(-ikzl, (13)

E, = Eo s o O-_ + s4 0-_ + " " " exp{-ikzl, 114)

E_ = Eo -is-_--( - is 1-_ + i o--_] .... expl-ikz),

(15_

{161Hx--0 ,

, d_o ... exp(-ikz), i171
H_ = Ho 00 + s" 5.. ,- i -_-/- i

[ 00o _0o I{6) H,. = Ho -is _ - is _ ---=0,0+ " " " exp(-ikz). I181

.assume that a Gaussian laser beam is focused to a

radius wo equal to k or even _,/'2, corresponding to s =
0.16 and s = 0.32, respectively. The so-called diffrac-
tion or confinement limit dictates that the beam

cannot be focused any more tightly than this. The
existence of this limit may be understood in a qualita-
tive and intuitive manner as follows. First consider

a plane wave that is propagating in the positive z
direction with its electric field polarized in the x
direction. The variation of E_ in the z direction !i.e.,
one cycle of variation over the distance _kz = x i in-

(7} duces a magnetic field H,. Similarly, the variation of
H r in the z direction induces a new electric field E:.

Together the two fields E_ and Hy recursively induce
each other, causing the forward propagation of the
plane wave. Now consider a beam with a Gaussian

profile in the x-y plane that is again propagating in
(8) the positive z direction. The additional variation of

E_ in the y direction induces a new magnetic field H:.
and the additional variation of H_ in the x direction

(91 induces a new electric field E.. The variations of E:

and hr. induce yet other fields. Together the new
fields E., and H.. cause the beam to spread transversely
as it propagates. When E, and H_ are slowly varying
in the x-y plane (i.e., wo :_ ;t or s _ 1), the induced
fields E. and/-/, are weak and the spreading is slow.
But when E_ and H_ are as rapidly varyfing in the x-v
plane as they are in the z direction ,i.e., wo = x or

s = 1 2_, the induced fields E: and H. are strong.
and the transverse spreading of the beam is as rapid
as its forward propagation. The transverse spread-
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ing resembles the nearly isotropic radiation from a
point source more than it does a transversely local-
ized beam that is propagating in a definite and

unambiguous direction. Therefore the range
0.16 < s < 0.32 indicates a range for the theoretical
limit between the directional propagation of a beam
and an isotropically radiating source. A similar limit
occurs for Fraunhofer diffraction by an aperture of
half-width a. For 2a > k, the diffraction pattern
contains both relative maxima and relative minima,
indicating direction dependence. But for 2a ,_ k,
the diffraction pattern is nearly isotropic in the
forward hemisphere.

We may also introduce the kth Davis beam approxi-
mation defined when only those terms in Eqs. (13)-
(18} that exphcitly depend on s up to and including
the power s _ are retained. We obtain the first Davis

beam (k = i) depending on _0 and concammg terms
up to sl; the third Davis beam (k = 3) depending on
¢0, $_., and containing terms up to s3; the fifth Davis
beam (k = 5) depending on $0, $2, $4 and contaimng
terms up to s_; and so on.t9 None of these beams is

an exact solution of MaxweU's equations. MaxweU's
equations are only satisfied in the limit k ---, =.

B. Standard Beams

In the framework of GLMT, an on-axis laser beam is

described by the set of BSC's g_ _ven by 13

g" = - 2 i"-_ J0 sin 2 Od0f/R, O)j,(R) n(n + 1)

x exp(-iR cos 0)P,l(cos 0), (19)

in which r, O, d_are spherical coordinates (Fig. 1), R =
kr, j,(RI are spherical Bessel functions, p l are as-
sociated Legendre polynomials, and f{R, O) is defined
by

= ex'p(-iR cos 0)f(R, 0)sin 01sin ¢b " (20)H/Ho]

Consider the kth Davis beam approximation and
denote its radial electric and magnetic fields by E, _
and H, _, respectively, with k = 1, 3, 5 for the first,

third, and fifth Davis beams, respectively. These
lead to the first-order, third-order, and fifth-order

approximations g_ to the BSC's in the following
way. t9 The approximation f_ to f is Taylor series
ex-panded in powers of the small parameter s, which
permits an analytical integration of Eq. (19). When
this is done, it is found that nonconstant terms occur:

i.e., the result of the integral does not cancel the
prefactor R/j,(R), contradicting the fact that the
BSC's must be constants. The occurrence of such

nonconstant terms is due to the fact that the approxi-
mations E. *and H_ _ do not exactly satisfy the Maxwell
equations. However, the nonconstant terms appear
at increasingly higher powers of s when k increases.
For k = 1, the O(s o) and O(s 2) terms are found to be

constants, with nonconstant terms occurring at O(s 4)
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and higher. For k = 3, nonconstant terms occur at

O(s s) and higher, and they occur at O(s 12) and higher
for k = 5. Because we understand that the noncon-

stant terms are artifacts produced by the approxi-
mate nature of the beam descriptions, they may be
dismissed. Because the details of the computations
require much algebra, it is somewhat of a pleasant
surprise that the resulting g,_s for k = 1, 3, 5 may be
written in the simple form,

k s2z (n-1_)! 1 (n+l+l)!g"_ = _(-l)l_'.(n- 1 )! (n _- I)! , (21)t_0 •

which explicitly leads to

g t = 1 - (n - 1)(n + 2)s", (22)

g3 = g l + _/2(n - 2)(n - 1)(n + 2)(n + 3)s 4

- 1/s(n - 3)(n - 2)(n - 1)(n + 2)(n + 3)

x (n + 4)s 8, (23)

g5 = g._ + _,/o_,(n- 4){n - 3)(n - 2)(n - l){n ÷ 2)

x (n ÷ 3)(n + 4)(n + 5)s s - iA=o{n - 51...

x (n - l)(n + 2)... (n + 6)s _°. (24)

The same procedure may be carried out for the
general on-axis case with zo =_ 0. The amount of
algebra is, however, now so great that by-hand compu-
cations are unreasonable, and use of symbolic compu-
cation software such as ._2L_. is compulsory. Still,
the g,_'s end up being _ven by the relatively simple
expressionS9

J*2z= _*t (-2iszoyg_ = _ _ i_l),s_,(l +j)! 1
j.o t.o \ wo /' l! j! l!

(n- 1)! (n + 1 +l)[

X(in_ 1-l)[ (n + l)[ exp(ikz°)" (25)

Equation (25) represents the most general and rigor-
ous result for the analytical evaluation of the BSC's,
which we call the s-expansion method.

Although s is usually small, it is demonstrated in
Subsection 2.C. that even ga s, which contains terms
of up to O(s1°), is not sufficient to describe extremely
focused beams or the BSC's accurately for large
partial waves. Because the amount of algebra that
would be required for higher-order Davis beams to be
designed and the corresponding g,*'s to be evaluated
is extensive, it is appealing to conjecture that Eqs.
(211 and (25) remain valid for k > 5. The infinite
generalization then reads

'°1',g"== - _=o -2is--wo/ -1)ls_ l!j[ l!

(n- 1)! (n* 1 +l)!

x (n- I-ll! in + 11! exp(ikzo), (26)



which reduces to

-1/s 2 (n- i]! (n + I +l)! [27i
g"_ = l[ [n - 1 - l)! (n _-11!l-O .

forzo = 0.

We call Eqs. 126} and (27) the standard BSC's, and
the beam defined bv this set of BSC's is called a
standard beam. Theg, _ coefficients of Eqs. (21) and
(25) will be called the kth-order approximation to the
standard BSC's. We claim that standard beams

should be taken as the ideal description of Gaussian
beams. This claim will be reinforced by the numeri-
cal results of Section 3. But before proceeding to
these numerical results, we must introduce the local-

ized approximation to the BSC's of Eq. [19).

C. LocalizedApproximation

The localized approximation for a focused Gaussian

beam 2° is built on the first-order Davis beam of Eqs.
(8) and (9) and results from the localized interpreta-
tion of partial-wave e.xpansions. For zo = 0, the
radial electric field of the first-order Davis beam in

Eq. (ii)may be writtenas

E_ = Eo expi-ikz)sin8 cos _ f(kr,9), !28)

with

f(kr, OI = iQ e.xp -iQ w° _ (1 - 2Qsr cos O/wo).

_29_

The localized approximation _, to the BSC's g, is
obtained by application of the localization operator L
to the function f in Eq. !29} according to the prescrip-
tion

Lf!R, 8} = f!n + !/2, _ 2}, (301

which is the van de Hulst localization principle
applied in the focal plane of the beam. -'-_ The integra-
tion in Eq. (19) may then be easily performed, cI
yielding

g--_= exp[-s"(n + 1/2}2]. (31)

To motivate the modified localized approximation,
we now demonstrate that the standard BSC's g," of
Eq. 127) may be approximated by

g_ = exp[-sa_n - 1)(n * 2t]. i32}

The demonstration proceeds in the followang way.
The e.xponential in Eq. I32) may be e.xpanded as

r .}_,exp[-s-,n - 1)(n + 2)]

= g t + V-__c_tn- 2)(n - l)(n -_ 2)In _- 3}s 4

- !,'_8{n - 3_In - 21In - 1,_n - '2)(n - 3)

× In * 4)s _ + .... (33)

whereg, 1 is _ven by Eq. (22) and

(n- 1)(n + 2)

a = (n - 2)(n + 3)' (34)

(n - 1)2(n + 2) 2

= (n - 3)[n - 2)(n + 3)(n + 4)" (35)

The behavior of a and _ as a function of the partial

wave n is illustrated in Table I. For small partial
waves, when a and t3 are significantly different from

1, the difference between the exponential in relation
(32} ex'panded up to O(s s) and g," is small because s4

and s s are small (10 -L2 and 10 -is for a typical beam
with s = 10-3). For large partial waves, the O(s 4)
and O(s s) terms contribute significantly. But then

= _ = 1 with a high accuracy, again validating

relation (32}. The same argument holds for higher
powers of s as well.

Relation (32) implies that we may introduce a

modified localized approximation and a modified local-

ization operator,

L_=if(R, O) = f[(n - 1) l "(n -'-, 2) t'z, =;91,.. (36)

leading to

g,.=od = e-xp[-s-_( n - 1)(n + 2) I. f37)

The modified localized approximation may also be
written as

g,.=od = exp[-sZT( n + :/z)_], (38)

where

(n- 1)(n + 2)
= (39)

(n + V2)2

,as is shown in Table 1, this ratio also quickly tends to
1 as n increases. Therefore the localized approxima-

tion of Eq. (31) is very close to the modified localized
approximation ofEq. !37). For zo _ 0, these approxi-

Tai01e 1. Coefficients(,. 13,and yo/Eqs, q34L L35'_,and 139L

Respectively, as a Function of Partial Wave

Partial Wave a[Eq.,341t B{Eq. 135}t _. ;Eq. ,39,j

5 1.166667 1.814815 0.925620

IO 1.038462 1.144427 0.979592

50 1.001573 1.005518 0.999118

100 1.000396 1.001388 0.999777

500 1.000016 1.000056 0.999991

1000 1.000004 1.000014 0.999998
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mations generalizeto

ZO 1 -Ig-"_= 1 + 2is- ex-plikzo)
, Wo)

(40)

t ZO / -L
g...,_ = t] + 2is wo/-- exp{ikzo)

lien÷ 211.
× [-; 2%zo,-" (41)

The results shown in Table 1 indicate that the

anal_ical expressions of the localized and the modi-
fied localized approximations bear a strong resem-
blance to the infinite-series standard-beam BSC's.

But Eqs. (31) and (37) are built on the first-order
beam, and the standard beams incorporate all the
higher-order terms. It is a pleasant surprise that
the localized approximation that is built on the
first-order beam anticipates these higher-order de-
scriptions and includes them [n an approximate way.
This will prove to be very. useful when the standard-
beam BSC's are slowly convergent and is examined m
more detail in the Section 3.

3. Numerical Discussion of Localized and
Standard 8SC's

[f we insert the localized and the sr.andard BSC's into

the beam partial-wave expansions, we generate the
localized and the standard beams, respectively. We
could then compare the localized- and the standard-
beam profiles. This was done for the beam focal
waist pJane in Refs. 19 and 27. [n this paper,
instead, we emphasize the comparison between the
individual values of the localized and the standard
BSC's.

A, Comparison forzo = 0 ands << 1

For the case Zo = 0. we compare the values of the
BSC's in Tables 2 and 3 for (1) the localized approxi-
mation of Eq. (31), labeled LA: (2) the modified
localized approximation of Eq. !37) labeled MLA; and

(3) the s-expansion method for the first-, third-, and
fifth-order approximations to the standard BSC's of
Eqs. {22-24). These are labeled D1, D3, D5, respec-
tively. Also compared are (4) the standard-beam
values obtained from Eq. (21) when k is increased
until a convergence of 9 significant figures is achieved.
The values of k for convergence is listed in Tables 2
and 3, as is the numerical value ofg, =. The results
shown in Table 2 are for the commonly encountered
situation ofs= 0.001.

First we consider the convergence of Eq. (21) for
the standard-beam BSC's for s = 0.001, which are
typical of laser Doppler and phase Doppler instru-
ments,'-3 and that correspond to focusing of the beam
to a radius Wo = 150X. The evaluation of g,_ has
been carried out by the use of the symbolic computa-
tion software MAPLE. This is compulsory because

when one isevaluatingthe srmndard coefficients,the

number of digitsrequired in the computations to

obtain 9 significantfiguresin the resultsmay be far

beyond what isavailablewith FORTRAN double preci-

sionvariables. ,_PLE allowsone tocarryout evalua-

tionswith an arbitrarynumber of significantfigures,

which isonly limitedby the host-computer available

storage,by setting the _APLE variable digitsto a

prescribedvalue. For instance,digits= 12 isenough
to evaluate g,_ for small n. For n = 2500, the

evaluation ofg3t requires digits= 20, and for n =

5000, the evaluation of g L01requires digits= 40.

Therefore, although the standard BSC's provide
benchmark values for the BSC's that describe a

focusedGaussian beam, such benchmark values may

inpracticebe difficulttoobtainforlargepartialwaves
and tightlyconfinedbeams.

Examining the sequence organ'sfor variouspartial

waves n and variousbeam ordersk,we may followthe

convergence of the standard scheme. Up to the

partialwave n = 5,g,L issufficient;i.e.,the standard

BSC's are correctly evaluated only by the use of

first-orderDavis beam. For I0 < n < I00, the use

of the third-orderDavis beam isrequired. Eventu-

allyitisnecessary to relyon the kth-order standard
scheme with k values largerthan 5. For example,

forn = 1000, 2500, and 5000 we need k = 15,31, and

i01, respectively. Large partialwaves n are associ-

TaDle 2. BSC's as a Function of Parlia| Wave for s = 0.001 for the Localized Approximation I LA); the Modified Localized Approximation IMLA); the

First- !01 h Third- IO3 h and Fifth-order {05; approximations to the Standard Beam; and the Standard Beam { S)-

. LA ML_ D 1 D3 D5 k, S

i 0.999997750 1.000000000 1.000000000 1.000000000 1.000000000 1,Same as DI

2 0.999993750 0.999996000 0.999996000 0.999996000 0.999996000 i, Same as D1

5 0,999969750 0,999972000 0.999972000 0.999972000 0.999972000 i,Same as D1

i0 0.999889756 0.999892006 0.999892000 0.999892006 0.999892006 3, Same as D3

50 0.997452999 0.997455243 0.999452000 0.999455238 0.997455238 3, Same as D3

100 0.989950586 0.989952813 0.080902000 0.989952793 0.989952793 3. Same as D3

t000 0.367511653 0.367512480 <0 0.332834669 0.366292083 15, 0.367511867

2500 0.001925633 0.001925638 < 0 < 0 < 0 31.0.00].925639

5000 0.138186 × 10 -m 0.138187 x i0 -m <0 <0 <0 101, 0.138208 x 10 -m

°For the sr.andard beam. the number of terms in _he infimte series of Eq., 27) required for convergence _o 9 significant figures ik} is also

glven.
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BSC's as a Function of Parttat Wave for $ = 0.16 for the Localized Approximation (LA); the Modified Localized Approximation (MLA); the

First- (01 _, Third- _D3), and Fifth-Order 105} Approximations to the Standard Beam; and the Standard Beam (S)*

Table 3.

:_ n L.A MLA D1 D3 D5 S

1 0.944027482 1.000000000 1.000000000 1.000000000 1.000000000 1, Same as D1

2 0.852143789 0.902668412 0.897600000 0.897600000 0.897600000 I, Same as D1

4 0.595472542 0.630778820 0.539200000 0.616138215 0.618138215 3, Same as D3

6 0.339052607 0.359155441 < 0 0.327063245 0.343026339 5, Same as D5

10 0.059463060 0.062988600 < 0 < 0 < 0 9, 0.058365667

15 0.002132629 0.002259075 < 0 < 0 < 0 15, 0.002267813

20 0.000021266 0.000022526 < 0 < 0 < 0 19, 0.000031912

25 0.589603 x 1.0-_ 0.624562 x 10 -_ <0 <0 <0 25, 1.853835 x 10-:

aFor the standard beam, the number of terms in the infinite series ofEq. _271 required for convergence to 9 significant figures Ik} is also
g_ven.

ated through the localized interpretation with geomet-
ric light rays that are passing far from the beam

axis. '-'2.23 Therefore the description of the outer parts
of the beam requires higher k orders than the descrip-
tion of the central region. This observation must be
reconciled with the previously demonstrated fact ts

that a first-order Davis beam satisfies Maxwell's
equations up to O(s "2)uniformly over all space. Our
results on the convergence of the standard scheme in
Table 2 indicate that the situation is more subtle

because the coefficients a_ of the various powers of s
can make terms such as a_s *, k > 2, significant if a, is
an increasing function of the partial wave n and if n is

big enough. Clearly, for the on-axis case, geometric
rays associated with large partial waves possess van-
ishingly small amplitudes that are ineffective in the
light-scattering process, so that a poor evaluation of
the corresponding BSC's should not be influential.
Note, however, that whether a partial wave is effec-
tive also depends on the size of the target particle

through the Lorenz-Mie partial-wave scattering am-
plitudes a, and b,. In addition, low partial waves are
classically associated with backscattering, and large
partial waves with side scattering. Thus, when one
compares g, values such as those in Table 2, where

g_ = 1.0 andgooo0 = 10 -tl, which is vanishingly small
m comparison with gt, we should actually compare
the light scattered m different directions. A more
refined discussion should then take into consider-

ation scattering diagrams in an actual scattering
process.

We now consider the accuracy of the localized

approximation and the modified localization approxi-
mation BSC's when compared against the benchmark
standard-beam BSC's for s = 0.001. In Table 2, the

comparison between the modined localized approxima-
tion and the standard scheme is excellent. Up to the
partial wave n = 100, the difference between the
modified localized approximation and the standard
scheme typically does not exceed 1 part in 10s. Even
t'or n = 5000, the disagreement lies in the fifth

significant figure. There the modified localized ap-
proximation based on the first-order Davis beam
anticipates the information contained in the 101st

order of the standard scheme. This unexpected inter.
nat coherence is considered as a cross-check of the

validity of the modified localized approximation, and
of the fact that standard beams should be considered

as the ideal reference beams. Finally, the localized
approximation agrees reasonably well with the stan-
dard BSC values. But the agreement for the modi-

fied localized approximation is better, especially for
n < 100.

B. Comparison for z0 = 0 and s = 0.16

Table 3 now provides a comparison for zo = 0 and s =
0.16 [i.e., 1,,':(2=)] near the theoretical confinement

limit. The range of important partial waves is much
smaller than in Table 2. This is a direct consequence
of the localized interpretation; i.e.. a BSC of partial
wave n is associated with the amplitude of the
geometric light ray that is passing at a distance

(n _ _,'_lk

P" = 2v: (42)

from the beam axis at the focal waist. From relation

(32) it can be seen that the amplitude decreases to
1,,'e 2 of its value on the z axis for n = 1500 ifs = I0 -a

andforn = t0ifs = 0.16. Then values are strongty
correlated with the necessity of using bigger k orders
to obtain convergence for the standard-beam BSC's.

There is also an increase in the difference between

the modified localized approximation and the stan-
dard values. This difference is dramatic for n = 25.
There is also an increased difference between the

localized and the modified localized approximations.
Also, depending on the partial wave n, the modified

localized approximation may compare more favorably
or less favorably with the standard BSC values than
the localized approximation. The deterioration of
the comparisons for s = 0.16 is consistent with the
approach to the physical confinement limit.

C. Comparison for Zo " 0

We now focus our attention on the convergence of the
standard-beam BSC's for the general on-axis case
zo -- 0, with g_" _ven by Eq. ¢26). Computations are
carried out by means ofa ._LE procedure, increasing
k in Eq. i25J until the convergence test g_ _ = g_*--' is
satisfied to an accuracy of 50 significant figures.
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The value of k for which convergence is reached is
denoted by K. In Fig. 2, K is displayed versus z0 for
glL the BSC for the first partial wave. The beam-
waist radius w0 is used as a parameter. The number
of terms required for convergence increases when Zo
increases and when w0 decreases, i.e., when the focal
waist of a tightly focused beam is far upstream or
downstream from the origin of coordinates. The
increase versus z0 is particularly sharp for the most
focused beam (w0 = 0.25 _m, s = 0.32) at the upper
limit of the physical confinement range. Figure 3
presents the same data shown in Fig. 2 versus the
dimensionless quantity zo/l, m which i is the spread-
ing length. Because of the fact that l is the natural
characteristic length to rescale the z coordinate, all

the curves in Fig. 2 collapse co a single curve in Fig. 3.
In Figs. 2 and 3 only the first partial wave was

considered. To extend the analysis to all partial
waves, K is presented in Fig. 4 as K (D, zo/l). In Fig.
4 z0 is still rescaled by l. Ra_er than the partial
wave n, the ordinate is now taken to be

D = (n - 1)1:2(n + 2}1,'2s, (43)

which is the distance p from the beam axis associated
with n through the modified localized interpretation
[Eq. (44}, below! and rescaled by w0. Figure 4, for
k = 0.5 _m, w0 = 5 _m, and s = 0.016, demonstrates
how the number of terms required for convergence
increases when Zo or n increases.

To some extent, these results might be considered
troubling. Consider, for instance, a small value for

s, which leads us to expect that the beam may be
safely described by a first-order Davis beam. Figure
4, however, tells us that this conclusion is true only in
a small region that surrounds the beam-waist center

and that the standard-beam BSC's will be slowly
convergent otherwise. Fortunately, as mentioned
above, the localized approximation anticipates the
behavior of high-order Davis beams and therefore
may be used in this case as an alternative to the

order k versus z_, for g_

/wo =,0.25 _ra
8o _ w0 _ 5_.m

_PPe-e-e Wo = lOraJn
wavelength = 0.5 _m

307

40

o _oo 2oo 300 _oo

Zo

Fig. 2. Value K of the kth-order standard beam required for

convergence of the BSC gL" as a function ofzo.
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Fig. 3.

convergence of the BSC gz" as a function of zo/l.

curves from Fig.2 now coincide.

LOO-

t

so _ Wo = 0.25 _m

wo = 5_m //
Wo = 10_m

80

40

20

o.0o o.,o 0.20 o. o o.,o o. o
zo/l

Value K of the kth-order standard beam required for the

The individual

standard-beam procedure to provide a fast and accu-

rate way to evaluate BSC's. This is the most impor-
tant result of this paper. When one is computing
light scattering with the GLMT formalism, the de-
scription of the incident beam should be accurate and
should permit scattering calculations to be performed
rapidly. The standard-beam BSC's yield the best
description of the beam. But in certain circum-

stances their slow convergence causes a large increase
in the computer run time of scattering calculations.
The localized approximation, on the other hand,

satisfies both criteria of accuracy and computational
speed, making it a useful tool in GLMT calculations.

The comparison between the standard, localized,
and modified localized BSC's may be complicated in

0.00 0.I0 0.20 0.30 0.40

2.50 2.50

2.00 2.00

= L50 1.50

0.50 0.50

0.00 0.00
0.00 0.10 0.20 0.30 0.40

z4/t

Fig. 4. Value K of the kth-order standard beam required ['or the

convergence of the BSC g_" as a function of zojl and D =

sln - i)_ _'n + 2}L _-for _ = 0.5 _rn. wo = 5 _.rn,ands = 0.016.
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the so-called off-axis case, when only one side of the
particle is illuminated by the beam. To investigate
this problem, it is necessary to design an expansion
method for higher-order Davis beams and correspond-

ing off-axis standard-beam expressions. As of yet,
this task has not been undertaken, to our knowledge.

4. Top-Hat Beams

Originally, the localized approximation for a focused
Gaussian beam was obtained by analogy to van de
Hulst's localization principle for plane waves. This
led us to associate a BSC g, with the amplitude of a
geometric light ray that is passing at a distance p,
from the beam axis, in which p, is given by Eq. (42t.
In the modified localized approximation, we have

k

p, =(n- 1) 12(n+ 2) 1 2= (44)

These relations allow us to investigate light scatter-
ing by the use of the localized approximation for
beams more general than Gaussian beams. For
instance, consider top-hat beams, which are used in
certain optical particle-sizing instrumentsJ -_° Top-
hat beam scattering has been calculated previously
with the localized approximation, without, however,
directly demonstration of the validity of the localized
approach to the case of top-hat beams.t° An assess-
ment of this validity is provided here. illustrating the
potentialities of the localized interpretation. We con-
sider an idealized beam profile defined by Eq. (201 in
which

{_ ifrsin0 < w0f(kr, O) = ifr sin 0 > w0,
(45)

corresponding to the plateau region of constant illumi-
nation of radius wo around the beam axis. If we rely
on the localized interpretation of Eq. !30), such a
beam should be generated by localized BSC's given by

{_ ifn < kwo - V2g" = if n > hwo - L/_"
(46)

The accuracy to which Eq. (46) describes a top-hat
beam was tested in the following way. It is known
that a given set of BSC's g, defines an on-axis laser
beam that is an exact solution of Maxwetl's equations.
The electric-field components of this beam in the
beam-waist plane !i.e., 0 = _ 21 are given by

E_(kr, _r,'2, d)i = Fttkr' - F,(kr}sin 2 da,

Ey(kr, _/2, _) = F,.lkr!sin d_cos d_,

E.(kr, _'2, d)l = F3ikr!cos _,

(47)

(48)

(49)

with similar relations for the magnetic fields' compo-
nents. The function F_ describes the dominant shape
of the beam profile, and Fe and F3 denote corrections
to the dominant shape induced by variations in E and

H in the x-y plane. The explicit forms of the func-
tions F_, F.% F3 in terms of the BSC's are given in
Ref. 19.

For the localizedbeam model of Eq. (46) the

dominant shape function FL(kr) was calculated for the
top-hat profile laser beam, for Wo = 25 p.m, 7.5 _m,
and 2.5 _m, and is shown in Figs. 5(a)-5(c). The
results are generally encouraging. The fields are
virtually constant from the z axis out to the radius wo
in the x-y plane as hoped. But beyond wo, instead of
being rigorously zero, the fields are oscillatory, with a
slowly decreasing amplitude. This is reminiscent of
the oscillatory ringing in the Fourier transform of a
function with a hard edge. m As the radius of the

top-hat beam wo decreases, the oscillations become
coarser and their amplitude increases. For example,
when Wo = 25 _m, the amplitude of the oscillations
falls by an order of magnitude from its value in the

plateau region when the distance p from the z axis is
approximately 1.2 Wo. For Wo = 2.5 _m this occurs
when p = 1.7wo. The exact effect that these oscilla-
tions in the localized electric and magnetic fields have
on the far-field scattered intensity calculated in the
GLMT framework is not known. But it is expected
to be small because the amplitude of the oscillations is
only a small fraction of Eo, the field strength in the

plateau region.
The sharp cutoff in Eq. (45), however, is not

observed in oscilloscope traces of experimental beam
profilesJ In actuality, the fields possess a smooth
but rapid roll-off for a > w0. A more realistic model
of a top-hat beam is then

1f(kr, 0) = exp[-(r sin 9 - Wo)2/e 2]

if rsin@ < w0

ifrsinO > Wo,

(50)

where e is the small roll-off distance of the beam in

thex-y plane. The localized beam model for Eq. i50)
with the prescription of Eq. (30) is then

1 ifn _ kwo - V?g_ = exp(-(n + V_.- kwo)_,/k2e _'] ifn > kwo - 1A.

(51)

The dominant shape function Fz of the beam defined
by Eq. (51) was calculated for wo = 25 _m and e =
0.05wo, and is shown in Fig. 6(aL The oscillations in
the field persist for p >_ wo. But their amplitude has
now been decreased co less than 10 -_ Eo, and their
effect on the far-field scattered intensity is similarly
reduced. This decrease is confirmed in Fig. 6(b) for
wo = 25 _m with the more gradual roll-off e = 0. lwo.
The oscillation level has now decreased to less than

10-4Eo and is again reminiscent of the reduction in
the oscillatory ringing in the Fourier transform of a
function with a smooth, g-radual edge. -'9 The results
in this section therefore further support the localized

interpretation of partial-wave analyses and provide a
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new localizeddescriptionof _op-hat beams [eq.(51)],

which improves on the descriptionof Eq. (46) previ-
ouslypubhshed inRef. 10.

5. Conclusion

In the GLMT framework, the question what are _he
electromagnetic fields of a laser beam is equivalent to
the question what are the values of the BSC's that

describe the beam? By the use of a so-called s-ex-
pansion method, one may obtain the fields of stan-
dard beams associated with standard BSC's. We

claim that these coefficients represent an ideal descrip-
tion of a Gaussian beam. Standard beams make

possible the study of both mildly focused and ex-
tremely focused beams. The so-called localized ap-
proximation received a rigorous justification. It pro-
vides a simple analytical expression for the BSC's
that is very close to standard beam values. Finally,
the localized interpretation of partial-wave expan-
sions that underlies the localized approximation re-
ceived further support from the investigation of
top-hat beams, because they may be accurately de-
scribed with the localized approximation.

This work was supported in part by National
Aeronautics and Space Administration grant NCC-3-
204.
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